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Abstract:  When the arithmetic mean (mean) is used as a measure of location for a set of right-

skewed positive observations, it is subject to being pulled upward.  This upward movement tends to 

move the mean away from the bulk of the observations, making it less representative of them.  One 

way to deal with this loss of representativeness is to transform the data.  A Box-Cox power trans-

formation can make a right-skewed distribution more symmetrical and then a measure of location 

for the original observations is found by applying an inverse transformation to the center of the 

transformed data.  This approach was used in a series of papers dealing with the Mean Absolute 

Percent Error (MAPE) as a measure of forecast and estimation error.  In this paper, we show that 

the Box-Cox power transformation can be used more generally with any mean computed for a set of 

right-skewed positive observations to develop R-MEAN (Rescaled-Mean).  We provide a set of 

examples to illustrate this approach and show its use in an actual application. 

Keywords:  Asymmetric distribution; Box-Cox Power Transformation; Outlier; R-MEAN 

JEL Classification:  B41, C13, C18  



ISSNs: 1923-7529; 1923-8401  © 2018 Academic Research Centre of Canada 

~ 18 ~ 

 

1. Background 

Any summary measure of location should location should meet five highly desirable criteria 

for summary measures of error: (1) validity, (2) reliability, (3) ease of interpretation, (4) clarity of 

presentation, and (5) support of statistical evaluation (National Research Council 1980). The mean, 

median, and mode can all meet these criteria, but under certain conditions the mean does not meet 

the validity criterion. The mean fails to meet a normative standard of validity if the data are highly 

skewed because it may be pulled away from the bulk of the observations. Because the mean is 

neither a resistant or robust summary measure, a few outliers can dominate it (Hoaglin, Mosteller, 

and Tukey 1983: 28; Huber, 1964; Huber, 1981; Tukey 1970). One way to deal with this loss of 

representativeness is to transform the data. Taylor (1985) shows that a Box-Cox power 

transformation can make a right-skewed distribution more symmetrical and a valid measure of 

location for the original observations can be found by applying an inverse transformation to the 

mean of the transformed data. This approach was used in a series of papers dealing with the Mean 

Absolute Percent Error (MAPE) as a measure of forecast and estimation error (Coleman and 

Swanson 2007; Swanson, Tayman and Bryan 2011; Swanson, Tayman and Barr 1999, 2000). 

However, it has not been applied to a general form of the mean when it is used for a set of right-

skewed positive observations. To rectify this shortcoming, we show in this paper that the Box-Cox 

power transformation can be used more generally with any mean computed for a set of right-

skewed positive observations.  

Our approach involves rescaling the mean to a measure we term “R-MEAN” (Rescaled-Mean) 

using a Box-Cox power transformation. Rescaling is designed to address the impact of outlying 

observations, while still preserving the valuable statistical properties of the mean. Our approach 

using a transformation is not the only way to deal with outliers. One could use a trimmed mean, a 

Winsorized mean, an M-estimator, or the median. These measures provide summary measures of 

location designed to represent the bulk of the observations and for which there are various trade-

offs relative to using transformations (Hoaglin, Mosteller and Tukey 1983: 28; Huber 1964, 1981; 

Taylor 1985; Tukey 1970; Wilcox 2012). 

2. R-MEAN 

To change the shape of a distribution efficiently and objectively and to achieve parity for the 

observations, Swanson, Tayman, and Barr (2000) use a standardized technique designed to generate 

a single, nonlinear function. This technique modifies the power transformation developed by Box 

and Cox (1964)
1
, defined as:  

    /)(  xy ,  when λ  0                                  (1) 

 or                             y(λ) = ln(x),            when λ = 0               (2) 

where x is the original observation, y is the transformed observation, and  is the power 

transformation constant. 

                                                 
1
 Swanson, Tayman, and Barr (2000) used  in the numerator.  Box and Cox (1964) used 1.0 in their 

original development to assure continuity in  when =0. The difference is immaterial. 
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One determines Lambda () by finding the  value that maximizes the function: 

              ii xyynnml ln1/1ln2/
2

   (3) 

where n is the sample size; y is the transformed observation; y  is the mean of the trans-

formed observations; and x is the original observation.  

According to Box and Cox (1964), ml() at a local maximum provides the power 

transformation () for x that optimizes the probability that the transformed distribution will be 

symmetrical. In other words, finding  does not guarantee symmetry, but it represents the 

transformation power most likely to yield a symmetrical distribution. We can find the maximum 

value of ml() by solving its function for different values of  between the range of –2 and 2 and 

identifying the largest resulting Box-Cox value (Draper and Smith, 1981: 225). 

To address the effect of a skewed distribution on the mean, we transform the original 

distribution using a Box-Cox power transformation to create a measure we term “MEAN-T (Mean 

Transformed) as the mean for this transformed distribution. The transformed distribution considers 

the entire data series, but assigns a proportionate amount of influence to each case through 

normalization, thereby reducing the otherwise disproportionate effect of outliers on a summary 

measure of error. Transformation, however, may move the observations into a unit of measurement 

that is difficult to interpret, so it is desirable to have a simple procedure for re-expressing MEAN-T 

back into the original scale of mean. To do this, we use the inverse approach developed and tested 

by Coleman and Swanson (2007)
2, 3 

: 

R-MEAN = [()(MEAN-T + 1)]
1/  

. 

3. Is R-MEAN Needed?  

Swanson, Tayman, and Barr (2000) suggested using a statistical skewness test developed by 

D’Agostino, Belanger, and D’Agostino Jr. (1990) to make a determination in regard to 

transformation of positive distribution. The null hypothesis tested is that the skewness value = 0, 

using the 0.10 level of significance. We recommend this significance level rather than more 

stringent ones (e.g., 0.05 and 0.01) because there is a greater cost in terms of a downwardly biased 

measure of accuracy in not transforming a potentially skewed distribution. When the skewness test 

indicates a potentially useful transformation of a skewed distribution to a symmetrical distribution, 

the transformation is assumed to be successful when the average of the new distribution is 

representative of the bulk of the observations and uses all of them. In this situation, the observations 

                                                 
2
 A potential shortcoming of the Box-Cox transformation is it is not globally monotonic. Individual 

values may have differential influence on the function. Values near the mean of the transformed 

distribution have little effect, while extreme outliers may actually reduce the MAPE-T. Because the 

Box-Cox transformation has no associated influence function, it is difficult to determine if and when 

the Box-Cox will perform this way (Coleman and Swanson 2007). 
3 Coleman and Swanson (2007) find this closed-form expression to be a member of the family of power 

mean-based accuracy measures. This enables it to be placed in relation to other members of this 

family, which includes the Harmonic Mean and the Geometric Mean. It also can serve as an estimator 

of the median. 
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receive nearly equal weights, closer to 1/n, while the resulting mean remains intuitively 

interpretable and clear in its presentation. 

 4. Examples 

Our examples are based on “Anscombe’s Quartet” (Anscombe 1973), which is comprised of 

four sets of positive data (all with n = 11) used to show the importance of graphing when 

considering a regression analysis. 

We have taken the original 

dependent variable observations 

from each of the four sets and added 

14  observations to each of the then 

in order to create data with a wider 

range of right skewness compared to 

Anscombe’s original data to 

examine of efficacy of R-MEAN 

(see Table 1).  

As can be seen in Table 1, the 

skewness for data set I is 0.697, 

while for sets II, III, and IV, the 

skewness is 0.050, 1.543, and 4.680, 

respectively. Using The NCSS 

statistical package (release 8) and a 

critical p-value of 0.10, the 

D’Agostino tests for skewness 

found that the assumption of 

normality could not be rejected for 

Data Sets I (p =0.127) and II (p = 

0.909). However, it is rejected for 

Data Sets III (p = 0.023) and IV ( p  

< 0.001).  These results indicate that 

the Box-Cox power transformation 

is needed for Data Sets III and IV, 

but not for Data Sets I and II.  As 

such, we compute R-MEAN for 

Data Sets III and IV. For heuristic 

purposes we also compute R-MEAN 

for Data Set II, where the 

D’Agostino test indicates it is not 

needed. 

 

  

Table 1. Anscombe's quartet dependent variables
a
 

Observation Data Set 

I II III      IV 

1 8.04 9.14 7.46 6.58 

2 6.95 8.14 6.77 5.76 

3 7.58 8.74 12.74 7.71 

4 8.81 8.77 7.11 8.84 

5 8.33 9.26 7.81 8.47 

6 9.96 8.10 8.84 7.04 

7 7.24 6.13 6.08 5.25 

8 4.26 3.10 5.39 12.50 

9 10.84 9.13 8.15 5.56 

10 4.82 7.26 6.42 7.91 

11 5.68 4.74 5.73 6.89 

12 5.20 5.20 5.20 5.20 

13 5.90 5.90 5.90 5.90 

14 8.00 8.00 8.00 8.00 

15 6.92 6.92 6.92 6.92 

16 3.20 3.20 3.20 3.20 

17 5.62 5.62 5.62 5.62 

18 6.01 6.01 6.01 6.01 

19 6.05 6.05 6.05 6.05 

20 5.98 5.98 5.98 5.98 

21 4.97 4.97 4.97 4.97 

22 5.23 5.23 5.23 5.23 

23 5.84 5.84 5.84 5.84 

24 5.00 5.01 9.20 15.00 

25 4.60 4.80 13.40 65.00 

     Mean 6.441 6.450 6.961 9.257 

Median 5.980 6.010 6.080 6.050 

Skewness 0.697 0.050 1.543 4.680 

D' Agostino p-value 0.127 0.909 0.023 <0.001 

R-Mean n/a 6.397 6.581 6.550 
a 
Observations 1 through 11 from Anscombe (1973); 

  Observations 12 through 25 from the authors. 
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To generate R-MEAN, we use an excel macro developed by Charles Barr (Swanson, Tayman 

and Barr 2000) that comes with instructions for use (available from the authors on request). For 

Data Set III, we find that R-MEAN is equal to 6.581, which is somewhat less than the mean of 

6.961 in Data Set III (see Table 1). This result shows the slight upward bias of the mean in a data 

set that is modestly right-skewed (skew = 1.543).  

An even more pronounced difference is found between the mean and R-MEAN in Data Set IV. 

Here, we find that R-MEAN is equal to 6.550, which is considerably less than the mean of 9.275. 

These results show a considerable upward bias of the mean in a data set that is substantially right-

skewed (skew = 4.680).  

Data Set II is used to illustrate the results when a transformation is not likely to be needed. 

Here we find the R-MEAN (6.397) is very close to the mean (6.450),which would be expected 

given that the null hypothesis of normality was not rejected (p = 0.909) and the right-skewness is 

virtually zero (skew = 0.050). In this situation, a Box-Cox power transformation is not needed. 

5. Application 

Our application uses county unemployment rates (not seasonally adjusted) as of October 2017 

for Arizona and New Mexico (Bureau of Labor Statistics 2017). As can be seen in Table 2 on the 

next page, the unemployment rates in Arizona’s counties are more right skewed than those in New 

Mexico with skews of 2.432 and 0.611, respectively. The D’Agostino tests for skewness found that 

the assumption of normality is rejected for Arizona (p = < 0.001) and the mean (6.287) is 

considerably larger than the median (4.800). The normality test is not rejected for New Mexico (p = 

0.129) and the mean (6.242) and the median (6.100) are close in value. 

These results indicate that the R-MEAN transformation is needed for Arizona, but not for New 

Mexico.  As such, we will compute R-MEAN for Arizona’s counties, but not for New Mexico.  We 

find that the R-MEAN (5.212) is noticeably less than the mean (6.287) and somewhat higher than 

the median (4.800).  

Again, these results show the efficacy of using the Box-Cox power transformation as a 

strategy for rescaling the mean in situations with right-skewed positive values. 
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Table 2. County unemployment rates, Arizona and New Mexico, October 2017
a
 

Arizona (15 observations)   New Mexico (33 observations)  

Apache County 9.4  Bernalillo County 5.4 

Cochise County 4.8  Catron County 7.0 

Coconino County 4.3  Chaves County 6.1 

Gila County 5.2  Cibola County 7.7 

Graham County 5.0  Colfax County 6.3 

Greenlee County 4.7  Curry County 4.9 

La Paz County 4.7  Debaca County 4.7 

Maricopa County 3.7  Dona Ana County 6.2 

Mohave County 5.1  Eddy County 4.9 

Navajo County 6.2  Grant County 6.1 

Pima County 4.0  Guadalupe County 6.0 

Pinal County 4.3  Harding County 7.5 

Santa Cruz County 11.0  Hidalgo County 4.8 

Yavapai County 3.9  Lea County 6.0 

Yuma County 18.0 
 

Lincoln County 5.6 

   
Los Alamos County 3.7 

   
Luna County 10.3 

   
McKinley County 8.5 

   
Mora County 7.2 

   
Otero County 6.0 

   
Quay County 6.1 

   
Rio Arriba County 6.1 

   
Roosevelt County 5.0 

   
San Juan County 6.5 

   
San Miguel County 7.0 

   
Sandoval County 6.1 

   
Santa Fe County 5.1 

   
Sierra County 7.0 

   
Socorro County 6.3 

   
Taos County 7.7 

   
Torrance County 8.0 

   
Union County 3.7 

   
Valencia County 6.5 

Mean 6.287 
  

6.242 

Median 4.800 
  

6.100 

Skewness 2.432 
  

0.611 

D' Agostino p-value <0.001 
  

0.129 

R-Mean 5.212     n/a 

a
 Data from Bureau of Labor Statistics (2017) 
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6.  Summary and Conclusion 

The arithmetic mean has a long history of use and is instrumental in the development of the 

method of “least squares” (Stigler 1986: 61). As noted by Cobb and Moore (1997: 801) in the field 

of statistics “… data are not just numbers, they are numbers with a context;” and the context for the 

arithmetic mean is that it is used to represent certain relationships in the data (Russell and Mokros 

1996: 362). For the mean, these “certain relationships” are denoted by the fact that the distance 

between two numbers is defined to be the square of their difference and the sum of the squared 

differences between each observation and the mean is smaller than the sum of squares of the 

differences between each observation and any other number. Although the definition used by the 

arithmetic mean is different than the definitions of distance used by the median and the mode, it 

shares with them the idea that it is representative of the observations. This is the normative standard 

of validity for each of these three measures of location. However, when the arithmetic mean is used 

as a measure of location for right-skewed positive observations, it is subject to being pulled upward, 

making it move it away from the bulk of the observations. This makes the arithmetic mean less 

representative of the observations, which can lead to its failure to meet a normative standard of 

validity. 

In this paper, we use a skewness test to determine if the arithmetic mean of a positive 

distribution represents the data from which it is computed. If it is not, we offer an alternative 

measure of central tendency that uses a Box-Cox power transformation to mitigate the impact of 

outlying observations and compute the mean from that transformed distribution (MEAN-T). 

Transformation may move the observations into a unit of measurement that is difficult to interpret, 

so we use an inverse approach for expressing MEAN-T back into the original scale of mean (R-

MEAN). While other statistics such as the median, M-estimators, trimmed mean have been 

developed to mitigate the impact of outlying observation when measuring central tendency, R-

MEAN has a number of advantages. It is easy to calculate, is readily understandable, uses all the 

observations in a distribution, and preserves the important statistical properties of the mean. 

We first illustrated this approach using the set of four distributions from Anscombe’s Quartet 

augmented with additional observations to create a wider range of skewness alternatives. We found 

the skewness test appropriately identified the distributions requiring transformation. In these 

distributions, the R-MEAN was substantially lower than the means from the untransformed data, 

indicating the ability of the transformation and re-expression process to create a mean that mitigates 

the impacts of outlying observations. We also found that the R-MEAN was very close to the mean 

in the distribution that did not require a transformation as would be expected if the original 

distribution was symmetrical. Similar results were found when analyzing county unemployment 

rates for Arizona and New Mexico (2017), with the former having a right-skewed distribution and 

the latter having a symmetrical distribution.  
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