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Abstract: This paper discusses GARCH models with multiple change-points and proposes a 

mixture localized likelihood method to estimate the piecewise constant GARCH parameters. The 

proposed method is statistically and computationally attractive as it synthesizes two degenerated 

and basic inference procedures. A bounded complexity mixture approximation, whose 

computational complexity is linear only, is also proposed for the estimates of time-varying GARCH 

parameters.  These procedures are further applied to solve challenging problems such as inference 

on the number and locations of change-points that partition the unknown parameter sequence into 

segments of constant values.  An illustrative analysis of the S&P500 index is provided. 
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1. Introduction 

Volatility modeling has been one of the most successful areas of research in econometrics and 

economic forecasting in the past decades.  Since the seminal works of Engle (1982) and Bollerslev 

(1986), autoregressive conditionally heteroscedastic (ARCH) and generalized autoregressive 

conditionally heteroscedastic (GARCH) models have been widely used to study empirical 

characteristics of asset returns and exchange rates. Stylized fact of volatility persistence, which 

means the sum of estimated autoregressive parameters of a GARCH model is close to 1, is 

commonly observed. It has been documented that if the model parameters contain structural breaks 

or change-points, then the fitted models that overlook the parameter changes tend to exhibit long 

memory; see Diebold (1986), Perron (1989), Lamoureux and Lastrapes (1990), Mikosch and Starica 

(2004), Hillebrand (2005), and reference therein. Many authors, for example, Galeano and Tsay 
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(2010) and Lai and Xing (2013), further argued that the structural breaks or change-points in model 

parameters are usually associated with extraordinary economic and political events such as financial 

crisis, economic recessions, and changes of central banks’ monetary policies. To model and make 

inference on such nonlinearity in GARCH models, Kokoszka and Leipus (2000) and Berkes et al. 

(2004a) introduced a cumulative-sum type statistic to estimate a single change-point in ARCH and 

GARCH models, respectively. Fearnhead and Liu (2007) used forward filtering recursions for the 

posterior distribution of the Markov chain to analyze on-line change-point problems. Galeano and 

Tsay (2010) proposed an iterative procedure to test change-point in individual parameters of a 

GARCH model and segment the time series accordingly. 

In this paper, we consider a class of GARCH models with unknown multiple change-points 

and develop a mixtured localized likelihood method to estimate the time-varying GARCH 

parameters. To circumvent the complication by the intertwining of jumps in GARCH parameters 

and GARCH dynamics, we decompose the likelihood into a mixture of localized likelihood and 

develop a recursive scheme for the mixture probabilities. We then use a combination of forward and 

backward filtering recursions to compute the mixture probabilities; see Yao (1984), Lai et al. (2005), 

and Lai and Xing (2011, 2013). Extending such an approach and combining it with maximum 

likelihood procedures for GARCH models, we obtain an efficient estimation procedure. Since the 

probability of change-points is assumed at each time point in our model, the likelihood of our model 

at each time point can be written as a mixture of localized likelihood given the most recent change-

points. 

Besides the issue of estimating time-varying parameters, one may also be interested in 

segmenting the data.  Common procedures for the segmentation problem rely on test statistics, such 

as the Lagrange multiplier (LM), the cumulative-sum (CUSUM), and likelihood based statistics, to 

segment the time series. In particular, the LM test statistics have been discussed by Andrews (1993) 

for general nonlinear models, and Chu (1995), Lundbergh and Ter  svirta (2002), and Galeano and 

Tsay (2010) have applied the LM statistic to GARCH models.  The CUSUM statistics have been 

used to detect change-points in ARCH models by Kokoszka and Leipus (2000) and Andreou and 

Ghysels (2002, 2004).  Fryzlewicz and Subba Rao (2014) propose a segmentation approach to 

detect multiple change-points in ARCH models. The likelihood-based statistics include the 

likelihood ratio statistics in Andrews (1993) and Lundbergh and Ter   svirta (2002) and 

approximated quasi-likelihood score in Berkes et al. (2004b). These approaches involve 

maximizing the log-likelihood over the locations of the change-points and the piecewise constant 

parameters when a fixed number of change-points is assumed. Such an optimization problem can be 

solved by dynamic programming, and then combined with minimization of a model selection 

criterion to choose the number of change-points. To avoid the computational complexity, we in this 

paper further develop a segmentation procedure that combines a distance measure based on 

unconditional variances to locate the change-points, and a Bayesian information criterion to select 

the number of change-points. Asymptotic properties of this segmentation procedure is discussed. 

The rest of the paper is organized as follows. In Section 2, we introduce our model assumption 

and develop a mixtured localized likelihood estimation procedure for time-varying GARCH 

parameters. We also propose a bounded complexity mixture algorithm to simplify the estimation 

procedure. In Section 3, we develop a segmentation procedure based on the unconditional variance 

of the time series. To show the performance of our inference and segmentation procedure, we 

present a simulation study to compare various features of our algorithm with an oracle algorithm in 

Section 4. We then apply our model and inference procedures to the S&P 500 weekly log return 

series in Section 5 and discuss the economic implications of estimated change-points. Finally, 

Section 6 provides some concluding remarks. 
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2. GARCH Models with Multiple Change-points 

Consider a GARCH(1,1) model with time-varying coefficients              
  

              
           

        
                              (1)  

where    are independent and identically distributed random variables with mean 0 and variance 1. 

For convenience, we assume that    follows either the standard normal or a standardized Student t-

distribution. Suppose the parameters    undergo occasional changes such that, for    , the 

indicator variables               are independent Bernoulli random variables with          . 

That is, with probability  , the GARCH parameters jump to a new set of values at each time point. 

Whenever there is such a jump in GARCH parameters at time  , we assume that the new value    

satisfy the regularity conditions of GARCH model with constant coefficients given in Bollerslev 

and Wooldridge (1992), so that the quasi-maximum likelihood estimation of the new GARCH 

model exists. 

We note that, the dynamics of time-varying GARCH parameters are actually not specified, 

except that they jump over time with probability  . Such specification avoids the concern whether 

one can correctly model the dynamics of GARCH parameters, and gives us more freedom. One 

potential concern on this setup is how the issue of volatility forecast should be addressed. We will 

first present an inference procedure in this section and discuss the forecasting issue in Section 3. 

2.1 A mixtured localized likelihood for    

Denote                and let        . To estimate the GARCH parameter    given   , 

we note that the parameter changes in    can occur before and after time  . To better explain this 

idea, we let                     and                     , i.e.    and     are the most 

recent change time before or after  , and                              for      , 

i.e.      is the event that there is no change from   to   and the most recent change time before and 

after   are   and  , respectively. Then the likelihood for    can be decomposed as a mixture of 

localized likelihood 

                                                             (2)  

in which                 is the likelihood of observations      for constant coefficient    given the 

event     , and                is the mixture probability. Making use of                 , one 

can show that the mixture probabilities      can be calculated by the recursions 

          
   

                                                                 

                                          
                 (3) 

where          
    ,           

 
         ,      is the value of the likelihood function of      

given      and a constant  ,                  , and                         . Note that the 

probabilities      and        can be further computed via recursions. One can also show that the 

recursion for      is given by          
       

  
   , where 

     
   

                                                 

                              
                             (4) 

Similarly, the probability        can be computed recursively by 

              
         

  
     , where  
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                                 (5) 

Given the mixtured localized likelihood (2), we construct an estimate of    in the following 

way. We denote       the maximum likelihood estimate of    for the localized likelihood 

               , then in the spirit of (2), an estimator of    can be constructed as 

                                                         (6) 

For the case    , since 

                             

     

  

we construct the estimator in the same spirit and obtain 

                                                          (7) 

Furthermore, since the evaluation of             and      involves the likelihood      of      in 

which    is an unknown constant, we replace      by the maximized likelihood                   . 

Denote the probabilities             and      after such replacement by               and      , 

respectively.  We then approximate (6) and obtain an estimator of    

      
                                   

                         
                (8) 

Note that the estimates     and     depend on  , but for notational simplicity we ignore the 

dependency for now. 

2.2 Estimation of change-point probability   

The above estimation procedure assumes the change-point probability   is known. In practice, 

  is unknown and we can estimate it from the data. From the definition of     
 , we can express the 

log-likelihood function as a function of  : 

                      
              

  
     

                   (9) 

in which     
  is a function of  , and hence   can be estimated by maximizing (9).  Another method 

is to use the expectation-maximization (EM) algorithm, which provides a much simpler structure of 

the log-likelihood       with the complete data                 , 

                                                       
        (10) 

The E-step of the EM algorithm involves the computing expectation of (10), and the M-step 

maximizes the expectation of (10), which yields an estimator of  , 

       
 

 
                  

    
 

 
                   

   
 
    

 

 
      

 
       (11) 

2.3 Bounded complexity mixture approximation for     

The proposed estimator (8) has quadratic and linear complexity for     and    , 

respectively. This results in rapid increasing computational complexity and memory requirements 

for estimating    as   increases. A natural idea to reduce the complexity and to facilitate the use of 

parallel algorithms for the recursions is to keep only a fixed number      of weights at every  . 

Following Lai and Xing (2011), we keep in (4) the most recent      weights      and the largest 

          of the remaining weights, where            . Specifically, let         be the 
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set of indices   for which        is kept at stage    ; thus,                       . At 

stage  , define     
  as in (4) for               and let    be the index not belonging to        

        such that  

     
          

                         , 

choosing    to be the minimizer farthest from   if the above set has two or more minimizers. Define 

                         and let 

          
       

 

       

           

Similarly, to obtain a BCMIX approximation to       , let          denote the set of indices   

for which        in (3) is kept at stage    ; thus                     . At stage  , define 

    
  as in (5) for                and let    be the index not belonging to                

such that 

     

          
                            

choosing    to be the minimizer farthest from   if the above set has two or more minimizers. Define 

                           and let           
       

 
                  , which yields a 

BCMIX approximation to      in (5). 

The BCMIX approximation to (8) can be obtained by replacing           with 

        and           , i.e.,  

                                                                   (12) 

in which           
     ,            

 
                   and     

  given by (3) for         and 

          . Here we have restored the dependency on   in the notation. Note that the 

computational complexity of the BCMIX approximation (12) is linearly bounded. We can show the 

following Proposition 1, which assumes conditions (C1) and (C2) that are similar to those of Yao 

(1988) for piecewise constant normal means: 

(C1) The true change-points occur at   
   

     
   

 such that                
   

     
   

    

for        , with   
   

   and     
   

  . 

(C2) Let  
  
     

  
        

  
     

  
     be the unconditional variance at   

   
 for      . 

There exists    , which does not depend on    such that           
  
     

    
         for all 

large  . 

Proposition 1. Assume (C1), (C2) and that                and                  

as    , for some    . Then 

   
                     

   
      

               
          
             

uniformly in            . 

As noted in Section 2.2, the parameter   can be estimated by EM algorithm. We can use the 

BCMIX approximation to replace      
  

    by      
 

        in the log-likelihood function (9) and 
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thereby estimate   by iterating along the EM algorithm. Putting this estimated     in        in (12) 

yields the empirical Bayes estimator        , which by Proposition 1 also satisfies the consistency 

property 

   
                     

   
      

                
          
                     (13) 

3. Segmentation and Volatility Forecast 

One important problem in multiple change-point analysis is to estimate the location of change-

points via maximization of log-likelihood. As explained in Section 1, this optimization problem can 

be solved by dynamic programming, which involves two layers of optimization. The inner layer of 

the optimization maximizes the log-likelihood of   change-points, 

                                                
    

      

   
               (14) 

in which      and         . The outer layer maximizes       together with a penalty 

function of k. The relative simplicity of our estimator for    in our model opens up new possibilities 

in resolving this challenging problem and determining the segmentation. In this section we use an 

appropriately chosen parameter   in our model to tackle this problem. Note that one usually 

assumes that   is small relative to   and that adjacent change-points are sufficiently far apart so that 

the segments are identifiable except for relatively small neighborhoods of the change-points. 

Motivated by this assumption, we restrict   to an interval             in our approach so that the 

arrival of change-points is approximately Poisson. 

Denote     as our BCMIX estimator of   . A natural idea is to compare the unconditional 

variances     
   at adjacent time points. Since     

               , a first order Taylor 

approximation of           
       

    can be expressed as 

          
       

                                                              (15) 

This motivates us to consider the following distance measure of     
   at times   and    , 

                                                                   (16) 

Assume that the minimal distance of two adjacent change-points is   , and there are at most   

change-points. We estimate the change-times sequentially by making use of               . 
Let     be the maximizer of    over          . After             have been defined, we define 

    as the maximizer of    over   that lies outside the   -neighborhood of     for        , i.e., 

    
                                                            (17) 

The procedure terminates with   change-points whenever there is no points outside the   -

neighborhoods of            , or the maximum number of change-points   is reached. Note that 

the estimates     of the locations of the change-points in (17) do not depend on  . Under the model 

of   change-points, we can take           and order them as                    to provide 

estimates of the   change-points. To simplify notations, we use         to represent                   

in the sequel. We know that            is the maximum likelihood over the estimated segment 

                   , where      and         . This yields the following 

approximation to (14): 

                    
   
                                            (18) 
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With an upper bound   on the number   of change-points, we propose to estimate   by 

                                                          (19) 

where    is the common penalty for each segment that satisfies 

        
  

 
                                                          (20) 

We have the following proposition 2: 

Proposition 2. Under (20) and the assumptions of Proposition 1, together with          for 

some    ,    

         
     . 

The penalty function    can be chosen in different ways. For instance, a Bayesian information 

criterion (BIC) criterion is obtained if               . In the spirit of a modified BIC that 

was proposed by Siegmund and Zhang (2006) for Guassian mean shift models where         

                       
   , we propose our version of the modified BIC as follows: 

                
 

   
                               

 

   
    

             (21) 

In other words, we have replaced                 
    in Siegmund and Zhang (2006) with 

             

   

   

          
 

   
  

which reaches its maximum 0 when the change-points are evenly distributed. The reason for the 

multiplier 
 

   
        is that structure changes tend to spread evenly with a large minimum 

distance   . Moreover, Lavielle (2005) proposed to replace    in (19) by      for change-point 

problems, where    is a parameter chosen by the user. In our study, we follow his suggestion and 

use         . 

We shall point out that, since the dynamics of the time-varying GARCH parameters are 

specified non-parametrically, the segmentation procedure here also serves for the purpose of 

forecasting. Actually, after the data are segmented, one could use the segmented data to estimate a 

GARCH model with constant coefficients. For forecasting purposes a constant-parameter GARCH 

model needs to be estimated on the last segmentation only. Then the forecasting issue can be 

addressed by classical discussions for GARCH models with constant coefficients. 

4. Simulation Studies 

To evaluate the performance of our proposed inference procedure, we conduct extensive 

simulation studies in this section. To measure the difference between the estimated and true 

parameters, we consider three types of distance measures here. We define the mean squared error 

(MSE) for estimate            as 

                  
 
  

                                   (22) 

We also consider the Kullback-Leibler (KL) divergence or the relative entropy, which is 

estimated by 

   
 

  
  

  
 

  
  

  
 

   
     

  
 

   
  

 
                                              (23) 

and a goodness-of-fit measure 



Review of Economics & Finance, Volume 8, Issue 2 

~ 51 ~ 
 

         
 

 
 

  
 

  
 

 
                                                   (24) 

Note that, given the true parameter   ,          follows a chi-square distribution with   

degrees of freedom. Thus, should our estimate     be close to   ,          and its standard 

deviation are close to 1 and      respectively. 

4.1 Performance of the BCMIX estimator 

We consider two types of parameter changes here. The first is that all parameters change at the 

same time, and the second is that change-point only occurs in one parameter, while other 

parameters remain constant. 

Example 1. Assuming all parameters change simultaneously, we consider the following six 

scenarios. Among them, the first scenario has no change-points, and the second and the third 

scenarios have two and three change-points, respectively.  The last three scenarios are similar to our 

model except    are generated randomly. 

(S1)                   for         . 

(S2)                   for        ,                   for          , and    
               for           . 

(S3)                   for        ,                   for          ,    
               for          , and                   for           . 

(S4) Change-points occur randomly with          . When a change-point occurs at time  ,    

follows a truncated uniform distribution on       
 such that   

 
 is covariance stationary. For 

identification purposes, we assume a minimum jump size of 0.1 for each parameter       and 

   at the change-points. 

(S5) Same setting as in S4 except          . 

(S6) Same setting as in S4 except          . 

 

Example 2. We now consider the case of change-points in individual parameters in the 

following six scenarios, which assume one and two change-points in       and   , respectively. 

(S7)                   for         and                   for           . 

(S8)                   for         and                   for           . 

(S9)                   for         and                   for           . 

(S10)                   for        ,                   for          , and 

                  for           . 

(S11)                   for        ,                   for          , and 

                  for           . 

(S12)                   for        ,                   for          , and 

                  for           . 

 

Table 1 and Table 2 below summarize the MSE, KL and GOF of the BCMIX, oracle (labeled 

“Oracle”), binary segmentation (labeled “BS”), and standard GARCH (labeled “Standard”) 
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estimators with their standard errors in parentheses for S1-S12. While GOF does not differ too 

much among different estimators, MSE and KL can reveal some information. When the true 

number of change-points is less than or equal to 1 (namely, scenarios S1, S7, S8, S9), the standard 

GARCH model tend to do relatively well. When the true number of change-points becomes larger 

than 1, standard GARCH performs poorly, and BCMIX outperforms both standard GARCH and 

binary segmentation in most scenarios. 

Table 1. Performance of the BCMIX(15, 10) and competing estimators for scenarios S1-S6 

Scenario Method MSE KL GOF          

S1 

0.000 

BCMIX 0.556 (1.07e-2) 0.023 (3.72e-4) 0.994 (7.00e-4) 0.024 (6.8e-3) 

Oracle 0.065 (1.30e-3) 0.001 (4.26e-5) 1.003 (3.00e-4) 0 

BS 0.416 (9.48e-2) 0.095 (2.36e-2) 1.010 (1.60e-2) NA 

Standard 0.353 (2.11e-2) 0.066 (1.22e-2) 1.028 (1.54e-2) NA 

S2 

0.016 

BCMIX 0.480 (7.50e-3) 0.024 (4.21e-4) 1.003 (1.90e-3) 0.031 (6.2e-3) 

Oracle 0.100 (6.00e-4) 0.003 (1.29e-4) 1.019 (1.50e-3) 0.014 (1.7e-3) 

BS 0.427(8.28e-2) 0.144(2.47e-2) 1.002(4.80e-3) NA 

Standard 0.533 (3.90e-2) 0.105(2.08e-2) 1.009(1.12e-2) NA 

S3 

0.021 

BCMIX 0.423 (6.00e-3) 0.025 (3.52e-4) 0.998 (1.40e-3) 0.033 (8.2e-3) 

Oracle 0.101 (5.00e-4) 0.003 (1.10e-4) 1.019 (1.40e-3) 0.019 (2.0e-3) 

BS 0.478 (6.43e-2) 0.131(2.40e-2) 1.000 (2.00e-3) NA 

Standard 0.463 (3.43e-2) 0.130 (2.37e-2) 1.000 (1.70e-3) NA 

S4 

0.004 

BCMIX 0.228 (4.90e-3) 0.014 (3.41e-4) 0.985 (6.00e-4) 0.011 (3.7e-3) 

Oracle 0.075 (1.20e-3) 0.001 (5.90e-5) 1.002 (3.00e-4) 0.004 (4.5e-3) 

BS 0.278 (2.38e-1) 3.11e-4(1.26e-2) 1.002(1.42e-2) NA 

Standard 0.354 (2.73e-1) 0.014(2.32e-2) 1.006(2.47e-2) NA 

S5 

0.007 

BCMIX 0.261 (5.10e-3) 0.016 (3.63e-4) 0.987 (9.00e-4) 0.015 (5.7e-3) 

Oracle 0.078 (1.00e-3) 0.002 (7.56e-5) 1.005 (7.00e-4) 0.007 (4.6e-3) 

BS 0.318(2.20e-1) 0.020(1.46e-2) 1.004(1.75e-2) NA 

Standard 0.456 (2.67e-1) 0.025(2.50e-2) 1.011(3.44e-2) NA 

S6 

0.015 

BCMIX 0.453 (1.67e-2) 0.019 (5.20e-4) 0.991 (1.90e-3) 0.019 (5.5e-3) 

Oracle 0.082 (8.00e-4) 0.002 (9.68e-5) 1.012 (1.20e-3) 0.015 (7.4e-3) 

BS 0.523 (2.15e-1) 0.020 (2.33e-2) 1.009 (2.95e-2) NA 

Standard 0.572 (2.15e-1) 0.039 (2.61e-2) 1.019 (4.48e-2) NA 

 

In each of these twelve scenarios, we run 500 simulations and in each simulation, we first 

estimate the change-point probability   via the EM algorithm and then compute the BCMIX 

estimator    . Since the BCMIX estimator involves two tuning parameters      and     , we try 
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different combinations of             = (20, 15), (15, 10), and (10, 7). As we didn’t find 

significant difference among the combinations, we only report the result of             = (15, 10) 

in the sequel. To demonstrate the performance, the BCMIX estimator is compared with 

1. an oracle estimator which assumes the change-times are known;  

2. the binary segmentation procedure in Galeano and Tsay (2010) that is based on the 

Lagrange multiplier (LM) test, where the significance level is 5% for the LM test; 

3. a standard GARCH model that assumes no change-points. 

Table 2. Performance of the BCMIX(15, 10) and competing estimators for scenarios S7-S12 

Scenario Method MSE KL GOF          

S7 

0.0004 

BCMIX 0.311 (6.10e-3) 0.013 (2.25e-4) 0.991 (4.00e-4) 0.007 (1.7e-3) 

Oracle 0.083 (9.00e-4) 0.002 (4.32e-5) 1.002 (2.00e-4) 0.001 (1.2e-4) 

BS 0.267(5.77e-2) 0.025(6.00e-3) 1.000(6.83e-4) NA 

Standard 0.216 (3.39e-2) 0.020(5.10e-3) 1.000(4.38e-4) NA 

S8 

0.0008 

BCMIX 0.208 (2.90e-3) 0.012 (2.48e-4) 0.987 (5.00e-4) 0.011 (4.3e-3) 

Oracle 0.091 (8.00e-4) 0.002 (3.99e-5) 1.001 (1.00e-4) 0.001 (1.1e-4) 

BS 0.266 (8.05e-2) 0.008 (4.10e-3) 1.000(8.75e-4) NA 

Standard 0.166 (3.61e-2) 1.36e-4 (2.30e-3) 1.000 (3.58e-4) NA 

S9 

0.0008 

BCMIX 0.201 (4.00e-3) 0.009 (1.61e-4) 0.991 (4.00e-4) 0.012 (2.5e-3) 

Oracle 0.083 (9.00e-4) 0.002 (4.55e-5) 1.001 (1.00e-4) 0.001 (1.3e-4) 

BS 0.352 (8.06e-2) 0.057(1.49e-2) 1.001(1.20e-3) NA 

Standard 0.311 (7.60e-2) 0.040(1.30e-2) 1.000(5.99e-4) NA 

S10 

0.0003 

BCMIX 0.185 (2.30e-3) 0.010 (1.71e-4) 0.988 (4.00e-4) 0.015 (3.3e-3) 

Oracle 0.089 (7.00e-4) 0.002 (4.33e-5) 1.002 (1.00e-4) 8e-4 (2.0e-4) 

BS 0.298(8.37e-2) 0.036(1.02e-2) 1.000(1.80e-3) NA 

Standard 0.292 (4.60e-2) 0.034(1.01e-2) 1.000(1.20e-3) NA 

S11 

0.0005 

BCMIX 0.201(2.70e-3) 0.010 (1.63e-4) 0.987 (4.00e-4) 0.012 (2.9e-3) 

Oracle 0.091 (7.00e-4) 0.002 (4.52e-5) 1.002 (2.00e-4) 

0.0006 

6e-4 (1.1e-4) 

BS 0.271(4.99e-2) 0.012(5.70e-3) 1.000(6.98e-4) NA 

Standard 0.287 (4.34e-2) 0.009(5.70e-3) 1.000(5.04e-4) NA 

S12 

0.0003 

BCMIX 0.241 (3.70e-3) 0.012 (1.76e-4) 0.989 (4.00e-4) 0.007 (1.5e-3) 

Oracle 0.088 (7.00e-4) 0.002 (4.16e-5) 1.003 (2.00e-4) 5e-4 (7.2e-5) 

BS 0.396(2.19e-1) 0.026(5.30e-3) 1.000(2.50e-3) NA 

Standard 0.579 (2.31e-1) 0.018 (5.80e-3) 0.999(2.60e-3) NA 
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Since we will use the distance measure (16) for segmentation, we also show whether (16) 

could capture parameter changes rather than time-varying variances. Define          
   

   
         . We show the value of this measure for the true parameters in S1-S12 in the first 

column of Table 1 and Table 2. We find that, although    is dependent on the values of GARCH 

parameters, it can capture parameter changes. We also compute          for the BCMIX and 

oracle estimators, and show them in the last column of Table 1 and Table 2, as we will use them for 

segmentation purpose in the next section. 

4.2 Performance of the segmentation procedure 

We next evaluate the performance of our segmentation procedure. For scenarios S1-S12, we 

use our and binary segmentation (BS) procedures to segment the data and estimate the locations of 

change-points. For scenarios S1-S6 in which change-points are simultaneous for all parameters, we 

compute the estimation errors for the number of change-points. Let   be the true number of change-

points in each scenario, and     are the estimated number of changes from segmentation procedures. 

We denote        as the estimation error and          the frequency that the estimation 

error has absolute value  . Table 3 shows some summary statistics for   in our and binary 

segmentation procedures. We can see that our procedure performs better than the binary 

segmentation procedure. Furthermore, it seems that the binary segmentation procedure tends to 

underestimate the number of change-points more than ours when multiple change-point are present. 

Table 3. The estimation errors   for scenarios S1-S6 

Scenario Method                              

S1 
BCMIX 0.044 (0.011) 0.964 0.028 0.008 

BS 0.116 (0.015) 0.890 0.104 0.006 

S2 
BCMIX 0.392 (0.030) 0.686 0.244 0.054 

BS -1.336 (0.045) 0.252 0.060 0.688 

S3 
BCMIX -0.004 (0.032) 0.600 0.370 0.028 

BS -1.248 (0.059) 0.320 0.242 0.176 

S4 
BCMIX -0.100 (0.028) 0.786 0.158 0.054 

BS -0.110 (0.029) 0.754 0.194 0.048 

S5 
BCMIX -0.286 (0.040) 0.604 0.276 0.096 

BS -0.454 (0.045) 0.570 0.262 0.122 

S6 
BCMIX -0.648 (0.053) 0.436 0.310 0.178 

BS -1.498 (0.062) 0.252 0.270 0.234 

For scenarios S7-S12 that involves one and two change-points in individual parameters, we 

show the estimated number of change-points and their frequencies in Table 4. We notice that our 

procedure still performs better than the binary segmentation procedure except in Scenario 9. 

To test the out-of-sample performance of a procedure, we use a measure based on volatility 

forecasts. Let     
  be the  -step ahead variance forecast for the GARCH model with the true 

coefficients of the last segmentation, and let      
  be the forecasted variance for some estimation 

procedure, where   is the length of the time series. We consider multi-step ahead prediction, and 

define the average absolute deviance as 
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                                            (25) 

where   is pre-specified number, which we set as 10. Notice that high persistence might lead to 

extraordinary large values of variance forecasts. To alleviate the influence of such extreme cases, 

we report the median rather than the mean, of   over all 500 simulation runs. The results are 

summarized in Table 5, where one remarkable fact is that standard GARCH tend to forecast ultra 

high volatilities, especially for S2 and S3 where both the true number of change-points and the 

magnitude of the parameter change are relatively large. In these cases, ignoring change-points 

generally produce high persistent GARCH models, where the sum of the estimates    and    is too 

close to 1.  As a result, in multi-step ahead prediction, as the number of forecasting steps increases, 

the predicted volatility converges to             , a potentially very large number. The 

prediction performances of BCMIX and binary segmentation are comparable in most scenarios. 

Table 4. Estimated change-points for scenarios S7-S12 

Scenario Method                        

S7 

    

BCMIX 0.316 0.312 0.2 0.11 1.302 (0.055) 

BS 0.8 0.184 0.016 0 0.216 (0.020) 

S8 

    

BCMIX 0.262 0.33 0.222 0.122 1.41 (0.054) 

BS 0.768 0.21 0.02 0.002 0.256 (0.022) 

S9 

    

BCMIX 0.05 0.564 0.276 0.092 1.468 (0.037) 

BS 0.216 0.732 0.052 0 0.836 (0.022) 

S10 

    

BCMIX 0.21 0.466 0.192 0.09 1.296 (0.047) 

BS 0.546 0.422 0.03 0 0.49 (0.026) 

S11 

    

BCMIX 0.034 0.576 0.242 0.106 1.55 (0.040) 

BS 0.212 0.718 0.066 0.004 0.862 (0.023) 

S12 

    

BCMIX 0 0.32 0.376 0.18 2.134 (0.047) 

BS 0.004 0.746 0.22 0.03 1.276 (0.023) 

 

Table 5. Median of   for all scenarios S1-S12 

Method S1 S2 S3 S4 S5 S6 

BCMIX 0.328 1.181 0.317 0.189 0.189 0.283 

Oracle 0.347 1.078 0.337 0.197 0.151 0.246 

BS 0.415 1.21 0.316 0.775 0.099 0.284 

Standard 0.347 2.11e+4 2.80e+4 0.381 0.903 4.196 

Method S7 S8 S9 S10 S11 S12 

BCMIX 0.685 0.47 0.099 0.288 0.586 0.392 

Oracle 0.441 0.505 0.078 0.179 0.675 0.399 

BS 0.794 0.324 0.077 0.21 0.563 0.37 

Standard 0.672 0.97 0.34 0.542 1.618 1.832 
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5. Application in Analyzing Weekly Returns of S&P 500 

We apply the proposed methodology to analyze the weekly log return    of the SP500 index, 
from the trade week of January 4, 1971 to the trade week of December 29, 2014. The data consists 

of          closing prices    on the last day of week from which the returns                 

are computed. Figure 1 top panel plots the weekly returns   . The mean, variance, skewness, and 

kurtosis of the return series are                             , and      , respectively. We 

fit the GARCH(1,1) model with multiple change model 

                 
           

        
                   (26) 

to these data, assuming unknown multiple change-points for           . For comparison, we also 

fit the standard GARCH(1,1) model 

              
         

       
                        (27) 

with constant parameters, to these data. In both (26) and (27),    are assumed to be i.i.d. standard 

normal. The maximum likelihood estimates of the parameters of (27) with their standard errors in 

parenthesis, based on the entire time series   , are                     ,           
           ,                  ,                  . Note that             is very close 

to 1, indicating high volatility persistence. 

We apply our inference procedure to fit the model (26). We first estimate the probability of 

change-point via the EM method in Section 2.2 and obtain that          . Then we estimate the 

model parameters of (27) via the mixtured localized likelihood method in Section 2.3. Figure 2 

plots the estimates                over time, which shows that these parameters undergo several 

abrupt changes during the whole sample period. This can be regarded as the evidence of the 

existence of multiple change-points. We further compute the volatilities based on the estimated 

parameters for models (26) and (27), respectively, shown in Figure 3. We find that GARCH models 

that incorporates the possibility of multiple change-points better capture high volatility in the 

market, especially when the market suffers instability. 

 

Figure 1. Weekly log returns of S&P 500 index (top) and the distance measure    (bottom) 

Dashed lines on the top panel represent segmentation result. 
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Figure 2. Estimated time-varying parameters     (top),     (middle), and     (bottom) 

 

With the estimated time-varying parameters, we compute the distance measure    via (16) for 

segmentation purpose, as shown in the bottom panel of Figure 1. Note that the spikes in      
indicate potential change-points or structural changes of the series, we then apply the segmentation 

procedure in Section 3 and obtain the estimated number of change-points       and their locations 

at                                 and     , which are overlaid with dashed vertical lines 

on the top panel of Figure 1. These locations correspond to the following dates: March 12, 1973, 

February 02, 1987, March 31, 1997, June 30, 2003, April 30, 2007, July 28, 2008 and October 26, 

2009. Table 6 shows the estimated GARCH parameters in each segment, with the estimated 

parameters for (27) in the bottom line. Compared to GARCH models without change-points, most 

segmented data demonstrate smaller values for      , indicating lower volatility persistence during 

each segmented period. The only exception is the period from February 2, 1987 to March 31, 1997, 

during which       is 0.973. As NBER documented that the US economy moved out of recession 

from the end of 1991, it suggests that our segmentation procedure may have missed certain 

structural change during that period. 

Though speculative, it is intriguing to explain these change-points with historical economic 

events. The first change-point is on March 12, 1973, which is in the beginning period of the 1973 

oil crisis and the concurrent 1973-74 stock market crash. The change-point on February 02, 1987 

could be considered as the effect of the early stage of the 1987 market crash. The third change-point 

on March 31, 1997 could be associated with the Asian financial crisis, which had a server impact on 

the global market due to financial contagion. The change-point on June 30, 2003 is towards the end 

of the 2002-03 stock market turndown caused by the internet bubble bursting. The change-points on 

April 30, 2007, July 28, 2008 and October 26, 2009 all lie in the 2008 global financial crisis, and 

they overlap with the beginning, the peak, and the end of the crisis, respectively. 
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Figure 3. Estimated volatilities in models (26) (Top) and (27) (Bottom) 

To investigate predictive power, we do a one-step ahead volatility prediction based on the 

model estimated using the first    samples of the data. This predicted volatility is compared with 

benchmark volatilities at time     , which are volatilities fitted from the full data (namely the 

volatilities in Figure 3). We carry out this procedure for both BCMIX method and the standard 

GARCH for n1 ranging from 2245 (corresponding to January 13, 2014) to 2294 (corresponding to 

December 22, 2014), and overlay the predicted and fitted volatilities in Figure 4. From Figure 4 it is 

obvious that the standard GARCH produces forecasts that are much further away from the 

benchmark volatilities than those generated from BCMIX. This observation, again can be explained 

by high persistence in the standard GARCH model when ignoring any change-points. 

 

Table 6. Estimated GARCH parameters with or without segmentation 

Period                

01/04/1971–03/12/1973 2.764e-5 0.103 0.807 0.91 

03/12/1973–02/02/1987 2.877e-5 0.091 0.849 0.94 

02/02/1987–03/31/1997 1.025e-5 0.121 0.852 0.973 

03/31/1997–06/30/2003 2.536e-4 0.128 0.539 0.667 

06/30/2003–04/30/2007 4.164e-5 0.025 0.782 0.807 

04/30/2007–07/28/2008 6.191e-5 0.015 0.879 0.894 

07/28/2008–10/26/2009 6.417e-4 0.816 0.049 0.865 

10/26/2009–12/29/2014 5.561e-5 0.202 0.662 0.864 

01/04/1971–12/29/2014 2.168e-5 0.142 0.819 0.961 
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Figure 4. Predicted and fitted volatilities from the BCMIX method and the standard GARCH 

6. Conclusion 

Change-point GARCH models have been widely discussed to explain the high persistence and 

long memory phenomena in asset return volatilities. In contrast to many discussions on testing 

procedures for GARCH models with a single change-point or multiple change-points in individual 

parameters, the research on direct estimation procedures for GARCH models with multiple change-

points has been hampered by the intertwining of nonlinearity of GARCH dynamics and multiple 

change-points. To overcome this difficulty, we decompose the likelihood to a mixture of localized 

likelihood and develop a recursive algorithm to compute the mixture probabilities, which is further 

used to construct an estimate for time-varying GARCH parameters. The developed estimation and 

associated testing and segmentation procedures are statistically and computationally simple and 

attractive, as it combines the standard estimation procedure for GARCH models and recent advance 

in multiple change-points inference. Furthermore, the developed procedure yields consistent and 

efficient estimates of GARCH parameters and change-points, which are demonstrated via 

simulation and empirical studies in the paper. 
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